Title of Invention

A PROCESS FOR FORMING AN OPTHELMIC LENS,LENS BLANK ,OR LENS PREFORM

Abstract Optic devices such as lenses and lens preforms having a high index of refraction formed from melt processable thermoplastic materials are provided.
Full Text This invention relates to a process for forming an opthalmic lens, lens blank, or lens preform.
__ also
This invention/relates generally to optic devices such as lenses, (monofocal and multifocal), progressive lenses, lens blanks, and lens preforms.
Background of the Invention
Lenses formed from thermoplastic material have enjoyed increasing popularity. Advances in the production of such lenses have included the use of materials that are lighter and free of unwanted color.
An attractive and important way to optimize a plastic lens is by use of materials having a high index of refraction. This enables lens designers to design thinner lenses having surfaces with larger radii of curvature.
Aromatic thermoplastics have been recognized as potential candidates for the fabrication of high refractive index materials for optical applications, particularly in the area of spectacle wear. Aromatic polycarbonates typify this approach to optical applications, and have an index of refraction of about 1.59. These materials are however known to be subject to undersirable chromatic aberration.
Aromatic polyethers that contain the triphenyl phosphine oxide moiety in the repeat unit have been described in the literature. Aromatic polyethers containing the phosphine oxide group are shown or suggested and described in U.S. Patent Nos. 4,l08,83,27 and 4,175,175. Some work
has been attempted on the use of these materials as short range optical fibers, and as plasma-
- resistant coatings.
These materials may be synthesized by the reaction of a variety of bisphenols with 4.4', -bis(fluorophenyl) phenyl phosphine oxide (BFPPO) in the presence of a base such as potassium carbonate in dipolar aprotic solvents such as N-methyl pyrrollidinone (NMP) or N,N- dimethyl acetamide (DMAC). Techniques for the synthesis of these compounds are known and many of their physical properties are well documented in the literature. See, for example, CD., Smith, et al, SAMPE Symps Exib. Vol. 35, No. 1, pp 108-22 (1990); R.L. Holzberlein, et al, Polymer Prepr., Vol. 30, No. 1 p. 293 (1989); D.B. Priddy, et al, Polymer Prepr., Vol. 34, No. 1, pp. 310-11 (1993); D.B. Priddy et al, Polymer Prepr. Vol. 33, No. 2, pp.231-32 (1992); CD. Smith, et al., Polymer Prepr., Vol. 32, No. 1, pp. 93-5 (1991); CD. Smith, et al, High Perform. Polymers, Vol. 3, No. 4, pp. 211-29 (1991). Controlled molecular weight with non-reactive end-groups may be generated, for example, by employing a mono functional monomer such as 4,tert-butyl phenol.
-1A-

Summary of the Invention
The present invention relates to optic devices formed from phosphine oxide containing aromatic polyethers and copolymers with non-reactive end-groups. These controlled molecular weight polyethers demonstrate good mechanical properties as well as favorable optical properties such as a refractive index of at least 1.63, good clarity, and light color. These are critical to the development of good quality, thin and lightweight ophthalmic lenses. Optic devices made from these materials are also less subject to chromatic aberrations.
Non-reactive chain ends are believed to help maintain stable melt viscosity during the processing operation, and to ensure that there is no change in melt viscosity due to chain extension or branching during processing, which also leads to loss of optical properties. The superior thermo-mechanical stability of these materials permit them to be processed at fairly high temperatures without thermal and mechanical degradation.
Thus the present invention relates to a process for forming an ophthalmic lens, lens blank, or lens perform comprising the steps of polymerizing a phosphine oxide moiety and a cyclic aryl moiety, a bicyclic aryl moiety, or a mixture thereof.
- 2 -

Detailed Description of the Invention
The aromatic polyethers that contain the phosphine oxide moiety in the backbone of the polymer chain possess the critical properties for their successful application in the area of ophthalmic lenses for spectacle eye-wear. The presence of the phosphine oxide moiety in the backbone of the polymer chain contributes to higher refractive index as well as improved thermal and mechanical properties. These materials demonstrate high glass transition temperatures in the range 200-225°C and therefore have to be processed at elevated temperatures such as 325 - 350°C. The mechanical properties of these materials indicate that they are tough, ductile and yet glassy materials under ambient conditions and therefore facilitate the generation of thin lenses that possess good impact resistance.
A properly end capped, non-reactive phisphine oxide containing aromatic polyether is described as Formula I below:

The polymer may be formed by reacting BFPPO, bisphenol A and a 4,-tert butyl phenol, shown below, under the conditions described Example 1.
- 3 -


Other homopolymers may be generated by employing a variety of bisphenols instead of Bisphenol 'A' such as hydroquinone, biphenol, 4,4'-oxy diphenol or bis(4-hydroxy phenyl) sulfone.
4
A number of polyether copolymers may be envisaged by substituting part of the phosphine oxide monomer with either 4,4'dichloro diphenyl sulfone or 4,4' difluoro benzophenone. The general structure of such copolymers may be shown as follows:




However, anhydrous morphologies must be maintained.
Optic devices fabricated from these materials are optically clear, and thinner at their edges than conventional ophthalmic plastic.lenses.owing-to their higher refractive index-values.
Example 1 (Preparation of Polymer)
31.43 grams, (0.1 moles) of 4,4' -bis(fluorophenyl) phenyl phosphine oxide (BFPPO) [Mol. Wt = 314.2706] along with 22.25 grams (0.098 moles) of bisphenol 'A' [Mol. Wt. = 228.2902] along with 0.70 (0.005 moles) of 4-tert. butyl phenol [Mol. Wt. = 138.209] were charged into the 4-necked reaction flask fitted with a bubble tube for argon, an overhead mechanical stirrer and a Dean-Stark trap connected to a reflux condenser. The reactants were dissolved in enough DMAC to make up a 30% solution by weight in a mixture of DMAC and chlorobenzene (80:20). The chlorobenzene served to function as an azeotroping solvent to efficiently remove the water of the condensation reaction as it was formed during the polymerization. The reaction was initially held at 135 - 140° for 4 hours till the water of condensation was completely distilled off. Subsequently, the reaction temperature was gradually raised to about 165°C and held there for an additional 16 hours. The reaction product was then allowed to coo! down to room temperature and filtered to remove the inorganic salts and neutralized with glacial acetic acid and isolated by precipitation into rapidly agitated methanol/water mixture in a high speed blender. The precipitate polymer was then filtered and dried in a vacuum oven at about 200°C overnight after being washed repeatedly with methanol to remove all traces of solvent.
The preferred range of number average molecular weight for these polymers is approximately 15,000 - 25,000 g/mol. At above a number average molecular weight of 25,000 g/mol., the melt viscosity may be too high for rapid processing. Polymers have therefore been synthesized with a targeted molecular weight of 20,000 g/mol. It is known from the literature that the polymer chain length, and thus the molecular weight, of the polymer can be adjusted by controlling the ratio of phosphine oxide to aryl moieties used in the synthesis process.
-5-

Example 2 (Formation of Lens)
A single vision lens of diameter 80 mms. with a refractice index of 1.66, a spherical power of-6.00 Data center thickness of 1.0 mm is made of the polymer of Example 1 by processing the polymer melt through an extruder and then forming a lens from the heated extrudate in a conventional injection molding apparatus. The edge thickness for such a lens is 8.8 mms.
A corresponding high index lens made of polycarbonate having a refractive index of 1.58 under the same set of parameters (i.e. center thickness of 1.0 mm, spherical power of-6.00 D, and lens diameter 80mms.) would have an edge thickness of 10.0mm..
The foregoing non-limiting example is provided as an illustration. The scope of the present invention is defined only by the following claims.
- 6-

WE CLAIM:
- 7 -
1. A process for forming an ophthalmic lens, lens blank, or lens
perform comprising the steps of polymerizing a phosphine oxide moiety
and acyclic aryl moiety, a bicyclic aryl moiety, or a mixture thereof.
2. The process of Claim 1 wherein the aryl moiety is a mixture of
bisphenol and butyl phenol.
3. The process of Claim 1 or 2 wherein the lens is a spectacle lens,
spectacle lens blank or spectable lens perform.
4. The process of any one of Claims 1 to 3 which produces a
progressive spectacle lens, progressive spectacle lens blank or progressive
spectacle lens preform.
5. The process of any one of Claims 1 to 3 which produces a bifocal
spectacle lens, bifocal spectacle lens blank or bifocal spectacle lens
preform.
Optic devices such as lenses and lens preforms having a high index of refraction formed from melt processable thermoplastic materials are provided.


Documents:

01410-cal-1998 abstract.pdf

01410-cal-1998 assignment.pdf

01410-cal-1998 claims.pdf

01410-cal-1998 correspondence.pdf

01410-cal-1998 description(complete).pdf

01410-cal-1998 form-1.pdf

01410-cal-1998 form-13.pdf

01410-cal-1998 form-2.pdf

01410-cal-1998 form-26.pdf

01410-cal-1998 form-3.pdf

01410-cal-1998 form-5.pdf

01410-cal-1998 priority document.pdf

1410-cal-1998-granted-abstract.pdf

1410-cal-1998-granted-assignment.pdf

1410-cal-1998-granted-claims.pdf

1410-cal-1998-granted-correspondence.pdf

1410-cal-1998-granted-description (complete).pdf

1410-cal-1998-granted-form 1.pdf

1410-cal-1998-granted-form 13.pdf

1410-cal-1998-granted-form 2.pdf

1410-cal-1998-granted-form 26.pdf

1410-cal-1998-granted-form 3.pdf

1410-cal-1998-granted-form 5.pdf

1410-cal-1998-granted-letter patent.pdf

1410-cal-1998-granted-reply to examination report.pdf

1410-cal-1998-granted-specification.pdf

1410-cal-1998-granted-translated copy of priority document.pdf


Patent Number 195290
Indian Patent Application Number 1410/CAL/1998
PG Journal Number 30/2009
Publication Date 24-Jul-2009
Grant Date 21-Oct-2005
Date of Filing 06-Aug-1998
Name of Patentee JOHNSON & JOHNSON VISION CARE INC
Applicant Address 5568 AIRPORT ROAD,ROANOKE,VIRGINIA
Inventors:
# Inventor's Name Inventor's Address
1 VENKATESHWARAN N.SEKHARIPURAM ROANOKE,VIRGINIA
2 JAMES E.MCGRATH BLACKSBURG,VIRGINIA
PCT International Classification Number C08F 275/00
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 08/912,117 1997-08-15 U.S.A.