Title of Invention

A MULTILAYER FILM

Abstract Disclosed herein is a low gauge, multilayer film which may be laminated to other materials such as, for example, fibrous nonwoven webs. The multilayer film may include one or more skis layers which in certain configurations comprise no more man about IS percent of the overall thickness and in other configurations no more man about 10 percent of the overall thickness of the multilayer film. Such films and laminates have a wide variety of uses including, but not limited to, personal care absorbent products, articles of doming and health care related hems such as surgical drapes and gowns. PRICE: THIRTY RUPEES
Full Text





The present invention is directed to low gauge, multi¬layer films with skin layers that are extremely thin. In addition, the present invention is directed to such films laminated to other materials such as, for example, fibrous nonwoven webs.
BACKGROUND OF THE INVENTION
The present invention is directed to extremely thin multi¬layer films and their use with laminates. Such materials have a wide variety of uses, especially in the areas of limited use and disposable items.
Many products today require highly engineered components and yet, at the same time, these products are required to be limited use or disposable items. By limited use or disposable, it is meant that the product and/or component is used only a small number of times or possibly only once before being discarded. Examples of such products include, but are not limited to, surgical and health care related products such as surgical drapes and gowns, disposable work wear such as coveralls and lab coats and a personal care absorbent products such as diapers, training pants, incontinence garments, sanitary napkins, bandages, wipes and the like. All of these products can and do utilize as components, films and fibrous nonwoven webs. While both materials are often used interchangeably, films tend to have greater barrier properties,

especially to liquids while fibrous nonwovens webs have, among other things, better tactile, comfort and aesthetic properties. When these materials are used in limited use and/or disposable products, the impetus for maximizing engineered properties tfhile reducing cost is extremely high. To this end, it is often desirable to use either a film or a nonwoven to achieve the desired results because the combination often becomes more expensive. In the area of films, there have been previous attempts to make multi-layer films with reduced thicknesses. 3ee, for example, U.S. Patent No. 5,261,899 to Vischer wherein i three layer film is made with a central layer that comprises from about 30 to 70% of the total thickness of the multi-layer film. One advantage in forming multi-layer films is that specific properties can be designed into the film, and, by caking the films multi-layer the more costly ingredients can be relegated to the outer layers where they are most likely to be leeded.
It is an object of the present invention to provide a nultilayer film which can be engineered to provide specific properties while providing such properties in a very thin jauge. Another object of the present invention is to combine ;uch low gauge films with other support layers such as layers )f fibrous nonwoven webs to increase strength „and provide lesthetic properties. The means by which such objectives are tchieved can be more fully comprehended by a review of the following specification, drawings and claims.
SUMMARY OF THE INVENTION
The present invention is directed to multilayer films and nultilayer film/nonwoven laminates. The films are made by conventional film forming techniques such as cast and blown coextrusion film forming processes. The films are created with core layer made from an extrudable thermoplastic polymer with the core layer defining a first exterior surface and a second mixterior surface. In the most basic configuration, a first skin layer is attached, usually simultaneously due on the

cbextrusion process, to the first, exterior surface of the core layer to form a multilayer film. The multilayer film defines an overall thickness with the first skin layer defining a first skin thickness which comprises less than about 10 percent of the overall thickness of the multilayer film. This is due to the stretching of the extruded film to such a degree so as to thin the multilayer film to within the dimensions defined herein. As a result, the thickness of the first skin layer will not exceed about 2 micrometers. Given the extremely thin nature of the multilayer film, it may be desirable to laminate the multilayer film to another material such as a support layer. Suitable support layers include, but are not limited to, such materials as other films, fibrous nonwoven webs, woven materials, scrims, netting and combinations of the foregoing.
In other embodiments of the present invention, the core layer may have a first skin layer attached to the first exterior surface of the core layer and a second skin layer attached to the second exterior surface of the core layer. In such situations, the first skin and the second skin layer should have a combined thickness which does not exceed about 15 percent of the overall thickness and more desirably where nerther the first skin thickness nor the second skin thickness exceeds more than about 7.5 percent of the overall thickness of the multilayer film. If desired, one or more of the layers may contain other additives such as", for example, a particulate filler. Most typically, such fillers will be primarily utilized in the core layer in, for example, a weight percent of at least about 60 percent, based upon the total weight of that particular layer.
It is also possible to make multilayer films which are breathable either through the use of specialized polymers which permit diffusion of gases through the layers and/or through the use of particulate fillers. Normally, to make such films breathable, they are stretched and/or crushed between compression rollers so as create voids in and around the particles to permit the transmission of water vapor and other gases. Typically such breathable multilayer films will have-

water vapor transmission rates of at least 300 grams per square meter per 24 hours.
Such films and laminates have a wide variety of uses including, but not limited to, applications in personal care absorbent articles including diapers, training pants, sanitary napkins, incontinence devices, bandages and the like. These same films and laminates also may be used in items such as surgical drapes and gowns as well as various articles of clothing either as the entire article or simply as a component thereof.
Accordingly, the present invention provides a multilayer film for products such as personal care absorbent articles, laminates surgical gowns and clothing, said multilayer film comprising: a core layer made from an extrudable thermoplastic polymer, said core layer having a first exterior surface and a second exterior surface, and wherein said core layer contains and filler has a plurality of voids around said filler; a first skin layer attached to said first exterior surface of said core layer to form said multilayer film, said multilayer film defining an overall thickness, and said first skin layer defining a first skin thickness, said first skin thickness comprising less than about ten percent of said overall thickness, said overall thickness not exceeding about 30 micrometers and wherein said multilayer film is a liquid barrier and has a WVTR of at least 300g/m2/24 hours.

The invention will now be described more in detail with reference to the accompanying drawings, in which;
Figure 1 is a cross-sectional side view of a multilayer film according to the present invention. The right side of the film has been split apart to facilitate its description.
Figure 2 is a cross-sectional side view of a multilayer film/nonwoven laminate according to the present invention.
Figure 3 is a schematic side view of a process for forming a multilayer film according to the present invention and a multilayer film/nonwoven laminate according to the present invention.
Figure 4 is a partially cut away top plan view of an exemplary personal care absorbent article, in this case a diaper, which may utilize a multilayer film and multilayer film/nonwoven laminate according to the present invention.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is directed to multilayer films, that is, films having two or more layers as well as such films laminated to support layers such as, for example, fibrous nonwoven webs. Referring to Figure 1, there is shown, not to

scalsa, a multilayer film 10 which, for purposes - of illustration, has been split apart at the right side of the drawing. The multilayer film 10 includes a core layer 12 made from an extrudable thermoplastic polymer such as a polyolefin or a blend of polyolefins. The core layer 12 has a first exterior surface 14 and a second exterior surface 16. The core layer also has a core thickness 22. Attached to the first exterior surface 14 of the core layer 12 is a first skin layer 18 which has a first skin thickness 24. Attached to the second exterior surface 16 of the core layer 12 is an optional second skin layer 20 which has a second skin thickness 26. In addition, the multilayer film 10 has an overall thickness 28. Such multilayer films 10 can be formed by a wide variety of processes well known to those of ordinary skill in the film forming industry. Two particularly advantageous processes are cast film coextrusion processes and blown film coextrusion processes. In such processes, the two or three layers are formed simultaneously and exit the extruder in a multilayer form. Due to the extremely thin nature of the multilayer films according to the present invention such processes will most likely prove to be the most advantageous though it also may be possible to form multilayer films using separate extrusion processes. For more information regarding such processes, see, for example, U.S. Patent Numbers 4,522,203; 4,494,629 and 4,734,324 which are incorporated herein by reference in their entirety.
An important feature of the present invention is the
ability to utilize a. more generic core layer 12 in conjunction
with a much thinner and more specially designed skin layer such
as the first skin layer 18 or a combination of two or more skin
layers attached to either or both sides of the core layer 12.
Thus, it is possible to form multilayer films 10 with many
layers of material. The core layer 12 as with the first skin
layer 18 and optional second skin layer 20 may be formed from
any polymers which are capable of being utilized in multilayer
film constructions including, but not limited to, polyolefins
including homopolymers, copolymers, and blends. To. further

reduce the cost of the. pore layer 12 one or store types of fillers may be added to the core layer polymer extrusion blend. Both organic and inorganic fillers, may be used. The fillers should be selected so as to not chemically interfere with or adversely affect the extruded film. These fillers can be used to reduce the amount of polymer being used for the core layer 12 and/or to impart particular properties such as breathability and/or odor reduction. Examples of fillers can include, but are not limited to, calcium carbonate (CaC03) , various kinds of clay, silica (Si02) , alumina, barium sulfate, sodium carbonate, talc, magnesium sulfate, titanium dioxide, zeolites, aluminum sulfate, cellulose-type powders, diatomaceous earth, magnesium sulfate, magnesium carbonate, barium carbonate, kaolin, mica, carbon, calcium oxide, magnesium oxide, aluminum hydroxide, pulp powder, wood powder, cellulose derivatives, polymer particles, chitin and chitin derivatives.
The amount of filler that can be used resides within the discretion of the end-user, however, additions of from 0 to 80% by weight based upon the total weight of the core layer 12 are possible. Generally the fillers will be in particulate form and usually will have somewhat of a spherical shape with average particle sizes in the range of about 0.1 to about 7 microns. Furthermore, if sufficient filler is used in combination with sufficient stretching of the multilayer film 10, then voids can be created around the particles contained within the core layer 12 thereby making the core layer breathable. High loadings, in excess of about 60 percent by weight of the core layer 12 when combined with stretching provides films which are breathable. Such breathable films will generally have Water Vapor Transmission Rates (WVTR) in excess of 300 grams per square meter per 24 hours.
The skin layers IS and 20 will typically include extrudable thermoplastic polymers and/or additives which provide specialized properties to the multilayer film 10. Thus, the first skin layer 18 and/or the second skin layer 20 may be made from polymers which give such properties as antimicrobial activity, water vapor transmission, adhesion and/or

antiblocking properties. Thus, the particular polymer co¬polymers chosen for the skin.layer 18 and 20 will depend upon the particular attributes desired. Examples of possible polymers that may be used alone or in combination include homopolymers, copolymers and blends of polyolefins as well as ethylene vinyl acetate (EVA), ethylene ethyl acrylate (EEA), ethylene acrylic acid (EAA), ethylene methyl acrylate (EMA), ethylene butyl acrylate (EBA), polyester (PET), nylon (PA) , ethylene vinyl alcohol (EVOH), polystyrene (PS), polyurethane (PU) and olefinic thermoplastic elastomers which are multistep reactor products wherein an amorphous ethylene propylene random copolymer is molecularly dispersed in a predominately semicrystalline high polypropylene monomer/low ethylene monomer continuous matrix.
Oftentimes it may be desirable to laminate the multilayer film 10 to one or more substrates or support layers 30 such as is shown in Figure 2. The core layer may not have sufficient adhesive or attachment properties so as to make it bondable to the support layer 30. As a result, the first skin layer 18 may be made from a polymer or polymers which exhibit higher adhesive properties and/or a lower tack point than the core layer 12.
A desired result with respect to the material of the present invention is to achieve a very low overall film thickness and more importantly, skin layers which are only a small percentage of the overall thickness of the multilayer film 10. As demonstrated by the examples below, based upon the overall thickness 28 of the multilayer film 10, in two layer constructions the first skin thickness 24 of the first skin layer 18 should not exceed more than 10 percent of the overall thickness 28. In three layer film constructions the combined thickness of the first skin layer 13 and second skin layer 20 should not exceed 15 percent of the overall thickness and generally, the first skin layer 18 should not exceed more than 7.5 percent of the overall skin thickness 28. The same is also true with respect to the second skin layer 20. As a result, the core thickness 22 comprises at least 85 percent of the

overall thickness 28 and the first skin layer 18 and second skin layer 20 each generally will comprise no more than 7.5 percent of the overall thickness 28. Generally, it has been possible to create thinned films with overall thicknesses 28 of 30 microns or less and in certain applications with skin layers that do not exceed two microns. This is made possible by first forming a multilayer film 10 and then stretching or orienting the film in the machine direction, as explained in greater detail below, such that the resultant multilayer film 10 has increased strength properties in the machine direction, i.e., the direction which is parallel to the direction of the film as it is taken off the film extrusion equipment.
The resultant film can, if desired, be laminated to one or more support layers 30 as are shown in Figure 2. The support layers 30 as shown in Figure 2 are fibrous nonwoven webs. The manufacture of such fibrous nonwoven webs is well known to those of ordinary skill in the art of nonwoven manufacturing. Such fibrous nonwoven webs can add additional properties to the multilayer film 10 such as, a more soft, cloth-like feel. This is particularly advantageous when the multilayer film 10 is being used as a barrier layer to liquids in such applications as outer covers for personal care absorbent articles and as barrier materials for hospital, surgical, and clean room applications such as, for example, surgical drapes, gowns and other forms of apparel. Attachment of the support layers 30 to the first skin layer 18 and second skin layer 20 may be by • the use of a separate adhesive such as hot-melt and solvent
with heated bonding rolls. As a result, it may be desirable to design either or both the first skin layer 18 and the second skin layer 20 so as to have inherent adhesive properties to facilitate the lamination process,
A particularly advantageous support layer is a fibrous nonwoven web. Such webs may be formed from a number of processes including, but not limited to, spunbonding, meltblowing and bonded carded web processes. Meltblown fibers are formed lay—extruding molten thermoplastic material through

a plurality of fine, usually circular, die capillaries as molten threads or filaments into a high velocity usually heated gas stream such as air, which attenuates the filaments of molten thermoplastic material to reduce their diameters. Thereafter, the meltblown fibers are carried by the high velocity usually heated gas stream and are deposited on a collecting surface to form a web of randomly dispersed meltblown fibers. The meltblown process is well-known and is described in various patents and publications, including NRL Report 4 364, "Manufacture of Super-Fine Organic Fibers" by B. A. Wendt, E. L. Boone and C. D. Fluharty; NRL Report 5265, "An Improved Device For The Formation of Super-Fine Thermoplastic Fibers" by K. D. Lawrence, R. T. Lukas, J. A. Young; U.S. Patent Number 3,676,242, issued July 11, 1972, to Prentice; and U.S. Patent Number 3,849,241, issued November 19, 1974, to Buntin, et al. The foregoing references are incorporated herein by reference in their entirety.
Spunbond fibers are formed by extruding a molten thermoplastic material as filaments from a plurality of fine, usually circular, capillaries in a spinnerette with the diameter of the extruded filaments then being rapidly reduced, for example, by non-eductive or eductive fluid-drawing or other well-known spunbonding mechanisms. The production of spunbond nonwoven webs is illustrated in patents such as Appel et al., U.S. Patent Number 4,340,563; Matsuki, et al, U.S. Patent Number 3,802,817; Dorschner et al., U.S. Patent 3,692,618; Kinney, U.S. Patent Numbers 3,338,992 and 3,341,394; Levy, U.S. Patent Number 3,276,944; Peterson, U.S. Patent Number 3,502,538; Hartman, U.S. Patent Number 3,502,763; Dobo et al., U.S. Patent Number 3,542,615; and Harmon, Canadian Patent Number 803,714. All of the foregoing references are incorporated herein by reference in their entirety.
Multilayer support layers 30 also may be used. Examples of such materials can include, for example, spunbond/meltblown laminates and spunbond/meltblown/spunbond laminates such as are taught in Brock et al., U.S. Patent Number 4,041,203 which is incorporated herein by reference in its entirety.

Bonded carded webs are made from staple fibers sucn are
usually purchased in bales. The bales are placed in a picker
which separates the fibers. Next the fibers are sent through
a combing or carding unit which further breaks apart and aligns
the staple fibers in the machine direction so as to form a
machine direction-oriented fibrous nonwoven web. Once the web
has been formed, it is then bonded by one or more of several
bonding methods. One bonding method is powder bonding wherein
a powdered adhesive is distributed throughout the web and then
activated; usually by heating the web and adhesive with hot
air. Another bonding method is pattern bonding wherein heated
calender rolls or ultrasonic bonding equipment is used to bond
the fibers together, usually in a localized bond pattern though
the web can be bonded across its entire surface if so desired.
When using bicomponent staple fibers, through-air bonding
equipment is, for many applications, especially advantageous.
A process for forming the multilayer film 10 is shown in
Figure 3 of the drawings. Referring to the figure, the
multilayer film 10 is formed from a coextrusion film apparatus
40 such as a cast or blown unit as was previously described
above. Typically the apparatus 40 will include two or more
polymer extruders 41. The multilayer film 10 is extruded into
a pair of nip or chill rollers 42 one of which may be patterned
so as to impart an embossed pattern to the newly formed film
10. This is particularly advantageous to reduce the gloss of
the film and give it a matte finistt. Using a three layer film
construction such as is shown in Figure 1, typically the
multilayer film 10. as initially formed, will have an overall
thickness 28 of approximately 40 microns or greater with the
first skin layer 18 and the second skin layer 20 each having
initial thicknesses of 3 microns or greater which collectively
is approximately 15% of the overall initial thickness.
From the coextrusion film apparatus 40 the film 10 is directed to a film stretching unit 44 such as a machine direction orienter which is a commercially available device from vendors such as the Marshall and Williams Company of Providence, Rhode Eeland. Such an apparatus 44 has a plurality

of stretching rollers 46 which progressively stretch and thin the multilayer film 10 in the machine direction of the film which is the direction of travel of the film 10 through the process as shown in Figure 3. After exiting the film stretching unit 44 the film 10 should have a maximum thickness of approximately 30 microns and each of the skin layers should have a maximum thickness of no more than about 2 microns which in turn is collectively less than about 15 percent of the overall film and more desirably less than 10 percent of the overall film thickness.
If desired, the multilayer film 10 may be attached to one or more support layers 30 to form a multilayer film/nonwoven laminate 32. Referring again to Figure 3, a conventional fibrous nonwoven web forming apparatus 48, such as a pair of spunbond machines, is used to form the support layer 30. The long, essentially continuous fibers 50 are deposited onto a forming wire 52 as an unbonded web 54 and the unbonded web 54 is then sent through a pair of bonding rolls 56 to bond the fibers together and increase the tear strength of the resultant web support layer 30. One or both of the rolls are often heated tc aid in bending. Typically, one of the rolls 56 is also patterned so as to impart a discrete bond pattern with a prescribed bond surface area to the web 30. The other roll is usually a smooth anvil roll but this roll also may be patterned if so desired. Once the multilayer film 10 has been sufficiently thinned and oriented and the support layer 30 has oeen formed, the two layers are brought together and laminated to one another using a pair laminating rolls or other means 58. As with the bonding rolls 56, the laminating rolls 58 may be leated. Also, at least one of the rolls may be patterned to create a discrete bond pattern with a prescribed bond surface area for the resultant laminate 32 Generally, the maximum sond point surface area for a given area of surface on one side of the laminate 32 will not exceed about 50 percent of the cotal surface area. There are a number of discrete bond >atterns which may be used. See, for example, Brock et al., J.S. Patent Number 4.041.203 which is incorated by

reference in its entirety. Once the laminate 32 exits the laminating rolls 58, it may be wound up into a roll 60 for .subsequent processing. Alternatively, the laminate 32 may continue in-line for further processing or conversion.
The process shown in Figure 3 also may be used to create a three layer laminate 32 such as is shown in Figure 2 of the drawings. The only modification to the previously described process is to feed a supply 62 of a second fibrous nonwoven web support layer 30 into the laminating rolls 58 on a side of the multilayer film 10 opposite that of the other fibrous nonwoven web support layer 30. As shown in Figure 3, the supply of support layer 30 is in the form of a preformed roll 62. Alternatively, as with the other layers, the support layer 30 may be formed directly in-line. In either event, the second support layer 30 is fed into the laminating rolls 58 and is laminated to the multilayer film 10 in the same fashion as the other support layer 30.
As has beer, stated previously, the multilayer film 10 and the laminate 32 may be used in a wide variety of applications not the least of which includes personal care absorbent articles such as diapers, training pants, incontinence devices and feminine hygiene products such as sanitary napkins. An exemplary article 80, in this case a diaper, is shown in Figure 4 of the drawings. Referring to Figure 4, most such personal care absorbent articles 80 include a liquid permeable top sheet or liner 82, a back sheet or outercover 84 and an absorbent core 86 disposed between and contained by the top sheet 82 and back sheet 84. Articles 80 such as diapers may also include some type of fastening means 88 such as adhesive fastening tapes or mechanical hook and loop type,fasteners. ._ .
The multilayer film 10 by itself or in other forms such as the multilayer film/support layer laminate 32 may-be used to form various portions of the article including, but not limited to, the top sheet 82 and the back sheet 84. If the film is to be used as the liner 82, it will most likely have to be apertured or otherwise made to be liquid permeable. When using a multilayer film/nonwoven laminate 31 as the outercover 84, it

is usually advantageous to place the nonwoven side facing out away from the user. In addition, in such embodiments it may be possible to utilize the nonwoven portion of the laminate 32 as the loop portion of the hook and loop combination.
Other uses for the multilayer film and multilayer film/support layer laminates according to the present invention include, but are not limited to, surgical drapes and gowns, wipers, barrier materials and articles of clothing or portions thereof including such items as workwear and lab coats.
TEST METHODS
The properties of the present invention were determined using a series of test procedures which are set forth below. These properties include film thicknesses, water vapor transmission rates and peel strengths.
Water Vapor Transmission Rate
The water vapor transmission rate (WVTR) for the sample materials was calculated in accordance with ASTM Standard E96-80. Circular samples measuring three inches in diameter were cut from each of the test materials and a control which was a piece of CELGARD 2500 film from Hoechst Celanese Corporation of Sommerville, New Jersey. CELGARD* 2500 film is a microporous polypropylene film. Three samples were prepared for each material. The test dish was a number 60-1 Vapometer pan distributed by Thwing-Albert Instrument Company of Philadelphia, Pennsylvania. One hundred milliliters of water was poured into each Vapometer pan and individual samples of the test materials and control material were placed across the
open tops . of the individual pans. Screw-on flanges were
tightened to form a seal along the edges of each pan, leaving the associated test material or control material exposed to the ambient atmosphere over a 6.5 centimeter diameter circle having an exposed area of approximately 33.17 square centimeters. The pans were placed in auforced air, oven at 100*F (32*C). The'

oVen was a constant temperature oven with external air circulating through it to prevent water vapor accumulation inside. A suitable forced air oven is, for example, a Blue M Power-O-Matic 60 oven distributed by Blue M Electric Company of Blue Island, Illinois. After 24 hours, the pans were removed from the oven and weighed again. The preliminary test water vapor transmission rate values were calculated as follows:
Test WVTR = (grams weight loss over 24 hours) x 315.5 g/m / 24 hrs
The relative humidity within the oven was not specifically controlled.
Under predetermined set conditions of 100°F (32°C) and ambient relative humidity, the WVTR for the CELGARD* 2500 control has been determined to be 5000 grams per square meter for 24 hours. Accordingly, the control sample was run with each test and the preliminary test values were corrected to set conditions using the following equation:
WVTR - (Test WVTR/ccntrcl WVTR) x 5000 g/m2/24 hrs.) (g/m2/ 2 4 hrs)
Film/Film Layer Thicknesses
The overall thickness 28, first skin thickness 24, core bhicteess 22 and second skin thickness 26 were measured in sross-section by Field Emission Scanning Electron Microscopy (FESEM) . Each film sample was submersed in liquid nitrogen and =ut on impact with a razor blade. The freshly cut cross-section was mounted to a specimen stub in an upright position asing copper tape. The samples were observed using an Hitachi 3-800 Field Emission Scanning Electron Microscope at 5 and 10 IceV. Scanning electron photomicrographs were taken at 2000X magnification to show the film structures for each sample. Ehree separate samples and corresponding pictures were prepared for each multilayer film. The 10.2 centimeter by 12.7

centimeter negatives were enlarged to 20.4 centimeter by 25.4 centimeter copies and the measurements were taken directly off these photographs. A reference 15 micron scale magnified at 2000X was superimposed on each photo. Five measurements for each of the layers was made on each of the three photos for each film sample thereby creating 15 datapoints or measurements for each thickness. Measurements were made for the first skin layer, the second skin layer and the core layer of each sample. The 15 measurements for each layer were combined and averaged to yield a thickness value in microns for each layer. The total thickness of the overall film was obtained by adding the average values for the core layer, first skin layer and second skin layer for each sample. The relative percentage of each skin layer was obtained by dividing the average thickness of the respective skin layer by the average overall thickness of the same sample and multiplying the result by 100 to yield percent.
180° T Peel Test
To test the bond strength between the film layer and the fibrous nonwoven comfort layer, a delamination or peel strength test was performed upon samples of the various materials. 10.2 centimeter (cm) by approximately 15.2 centimeter (cm) samples of the material were cut. To the film side of the samples there was applied a 10.2.cm by 15.2 cm piece of 3M 2308 masking tape. The sample were then rolled, tape side up, forward and backwards two times with a 22.2 kilogram roller weight. The samples were then manually delaminated at one of the short ends to produce edges which could be placed within the jaws of a Sintech*/2 Computer Integrated Testing System manufactured by MTS Systems Corporation of Eden Prairie, MN. The jaw gap was set at a span of 100 millimeters and enough of the material was left in the laminated state so that the jaws could travel 65 millimeters. The sample was positioned in the jaws so that the sample would start delaminating before the jaws had been expanded 10 millimeters. The crosshead speed was set at 300

millimeters per minute and the data were then recorded between the 10 millimeter start point' and the 65. millimeter end point. The data recorded indicated the peel strength.or load necessary in grams to separate the two layers and the standard index in grams with a maximum, minimum and mean value.
EXAMPLES
All the example films were three layer films with the two outer or skin layers in each example being the same. All films were cast films and all the films were embossed prior to stretching to yield a matte finish on the films. In addition, all the films were laminated to a 17 gram per square meter (gsm) polypropylene spunbond web made from approximately 2 denier fibers. The spunbond web was prebonded with a point bond pattern having an overall bond area of approximately 15 percent.
Example 1
In Example 1 the core layer was, on a weight percent basis based upon the total weight of the layer, 65 percent ECC English China Supercoat™ calcium carbonate with a 1 micron average particle size and a 7 micron top cut. The calcium carbonate was obtained from ECCA Calcium Products, Inc. of Sylacauga, Alabama which is a division of ECC International. The core layer also included 15 percent Exxon 9 3 02 Random Copolymer Polypropylene (RCP) from the Exxon Chemical Company of Houston, Texas, 15 percent Himont KS059 Catalloy polymer from Himont U.S.A. of Wilmington, Delaware and 5 percent Quantum NA206 Low Density Polyethylene (LDPE) from Quantum Chemical Corporation of New Vork, New York. The Kimont Catalloy polymer is an olefinic thermoplastic elastomer or TPO multistep reactor product wherein an amorphous ethylene propylene random copolymer is molecularly dispersed in a predominately semicrystalline high polypropylene monomer/low ethylene^ monomer continuous matrix.

The two outer or skin layers on opposite sides of the core. layer comprised 15 percent Himont KS057 Catalloy polymer from Himont U.S*A., 20 percent Ampacet 10115 antiblock and 65 percent Exxon XC-101 (28 percent EMA copolymer). Ampacet 10115-antiblock comprises 20 weight percent Superfloss™ diatomaceous earth let down in 79.75 percent Chevron 2207 EMA and 0.25 percent aluminum stearate. Ampacet 10115 antiblock is available from Ampacet Corporation of Tarrytown, New York. Chevron 2207 EMA is available from the Chevron Chemical Corporation of San Ramon, California and Exxon XC-101 is available from the Exxon Chemical Company of Houston, Texas.
The three layer film was extruded using cast extrusion equipment of the type described above. The exiting melt temperature for the skin layers was measured to be 196°C and for the core was 223°C. The air gap (distance between the die and the nip chill roll) was 53 centimeters and the gauge of the resultant film was 38 micrometers (microns) . The film was wound up on a roll and later sent through a Machine Direction Orienter (MDO) Model No. 7200 from the Marshall and Williams Company of Providence, Rhode Island. The MDO unit was preheated to 77 °C and the film was stretched 4X while at a temperature of 7 7rC. By saying the film was stretched 4X it is meant that, for example, a 1 meter long film would be stretched to a resultant length of 4 meters. The final measured thickness of the film was 16.08 microns and the basis weight was 17 grams per square meter (gsm). Each of the two skin layers comprised approximately 2.7 percent of the overall film thickness. As a result, the core layer represented 94.6 percent of the overall thickness. Using the film thickness measuring method described above, the two skin layers each had a film thickness of 0,44 microns and the core layer had a thickness of 15.2 microns.
The resultant film was then thermally laminated to the above-described spunbond layer using a patterned bonding roll having a temperature of approximately 77'C and a smooth anvil roll at a temperature of approximately 54 "C with a nip pressure of 4,2.18 kilograms per meter (kg/m) while at a line speed of 152 meters per minute with and overall bond area of 15 percent

based upon the surface area of one side of the film. The laminate was passed through the bonder in such a fashion that the spunbond layer was adjacent the pattern roll and the film layer was adjacent the smooth anvil roll. The resultant laminate had a Water Vapor Transmission Rate (WVTR) measured as described above of 2570 grams per square meter per 24 hours . (2570g/m2/24hr or day) . The laminate had a hydrohead of 70 centimeters and a peel strength of 48 grams.
Example 2
In Example 2 the core layer was, on a weight percent basis based upon the total weight of the layer, 65 percent ECC English China Supercoat™ calcium carbonate, 15 percent Exxon 93 02 Random Copolymer Polypropylene (RCP), 15 percent Himont KS059 Catalloy polymer and 5 percent Quantum NA2 06 Low Density Polyethylene (LDPE).
The two outer or skin layers on opposite sides of the core layer comprised 15 percent Ampacet 10115 antiblock (20 percent diatomacecius earth antiblock let down in a 24 percent copolymer ethylene methyl acrylate (EMA)) concentrate or masterbatch and 85 percent Himont KS057 Catalloy polymer.
The three layer film was extruded using cast extrusion equipment of the type described above. The exiting melt temperature from the extruder for the skin layers was 188oC and the melt temperature for the core layer was 223°C. The air gap (distance between the die heads and the forming nip) was 53 centimeters and the gauge of the resultant film was 3 5.5 microns. The film was wound up on a roll and later sent through the MDO unit which was preheated to 88°C and the film was stretched 3X while at a temperature of 88°C. The final measured thickness of the film was 17.28 microns and the basis weight was 15 gsm. Each of the two skin layers comprised 2 percent of the overall film thickness. As a result, the core layer represented 96 percent of the overall thickness. Using the film thickness measuring method described above, the two

skin layers each had a film thickness of 0.3 3 micrometers (microns) and the core layer had a thickness of 16.62 microns. The resultant film was then thermally laminated to the above-described spunbond layer using a patterned bonding roll having a temperature of approximately 77°C and a smooth anvil roll at a temperature of approximately 54 °C with a nip pressure of 4,218 kg/m while at a line speed of 152 meters per minute with and overall bond area of 15 to 18 percent based upon the surface area of one side of the film. The laminate was passed through the bonder in such a fashion that the spunbond layer was adjacent the pattern roll and the film layer was adjacent the anvil roll. The film had a Water Vapor Transmission Rate (WVTR) measured as described above of 92 5 grams per square meter per 24 hours and the laminate had a WVTR of 820g/m2/24hr. The laminate had a hydrohead of 113 centimeters and a peel strength of 62 grams.
Example 3
In example 3 the core layer was, on a weight percent basis based upon the total weight of the layer, 63 percent ECC English China Supercoat™ calcium carbonate, 19 percent Himont KS059 Catalloy polymer, 13 percent Shell 6D8I polypropylene from the Shell Chemical Company of Houston, Texas and 5 percent Dow 4012 low density polyethylene (LDPE) from Dow Chemical U.S.A. of Midland, Michigan.
The two outer or skin layers on opposite sides of the core layer comprised, 30 percent Himont KS057 Catalloy polymer, 2 0 percent Techmer S110128E62 antiblock/EVA concentrate or masterbatch from Techmer PM of Rancho Dominguez, California, 20 percent Exxon 760.36 EMA and 30 percent Lotryl 29MA03 Ester-Modified EMA copolymer from Elf Aloehein N.A. of Philadelphia, Pennsylvania.
The three layer film was extruded using cast extrusion equipment. The exiting temperature from the extruder for the skin layers was 188°C and for the core was 209°C. The air gap (distance between the die heads and the forming roll) was 66

centimeters and the gauge of the resultant film was 38 microns. The film was wound up on a roll and later sent through the MDO unit which was preheated to 71°C and the film was stretched 4X while at a temperature of 71°C and subsequently annealed at a temperature of approximately 85oC.
The final gauge of the film was 16.98 microns and the basis weight was 17 gsm. Each of the two skin layers comprised 3.7 percent of the overall film thickness. As a result, the core layer represented 92.6 percent of the overall thickness. Using the film thickness measuring method described above, the two skin layers each had a film thickness of 0.6 microns and the core layer had a thickness of 15.77 microns.
The resultant film was then thermally laminated to the above-described spunbond layer using a patterned bonding roll having a temperature of approximately 110°C and a smooth anvil roll at a temperature of approximately 32 °C with a nip pressure of 4570 kg/m inch while at a line speed of 61 meters per minute with and overall bond area of 15 to 18 percent based upon the per unit surface area of one side of the film. The laminate was passed through the bonder in such a fashion that the spunbond layer was adjacent the pattern roll and the flim layer was adjacent the anvil roll. The film had a Water Vapor Transmission Rate (WVTR) measured as described above of 13 01 grams per square meter per 24 hours (13 01g/m2/24hr) and the resultant laminate had a WVTR of 1184g/m2/24hr. The laminate had a hydrohead of 110 centimeters and a peel strength of 161 grams.
Example 4
In Example 4 the core layer was, on a weight percent basis based upon the total weight of the layer, 63 percent ECC English China Supercoat™ calcium carbonate, 19 percent Himont KS059 Catalloy polymer, 13 percent Shell 6D81 polypropylene and 5 percent Dow 4012 LDPE.
The two outer or skin layers on opposite sides of the core layer comprised 35 percent Himont KS057 Catalloy polymer, 20

percent Techmer S110128E62 antiblock/EVA concentrate/masterbatch and 45 percent Exxon 760.36 EMA.
. The three layer film was extruded using cast extrusion
equipment. The exiting temperature for the skin layers was
187°C and for the core was 2 08 'C. The air gap (distance
between the die heads and the forming roll) was 66 centimeters
and the gauge of the resultant film was 35.5 microns. The film
was wound up on a roll and later sent through the MDO unit
which was preheated to 71 'C and the film was stretched 4X while
at a temperature of 71°C and subsequently annealed at a
temperature of approximately 85°C. The final measured
thickness of the film was 15.96 microns and the basis weight was 15 gsm. Each of the two skin layers comprised 3.0 percent of the overall film thickness. As a result, the core layer represented 94.0 percent of the overall thickness. Using the film thickness measuring method described above,, the two skin layers each had a film thickness of 0.4 8 microns and the core layer had a thickness of 15.0 microns.
The resultant film was then thermally laminated to the above-described spunbond layer using a patterned bonding roll having a temperature of approximately 110°C and a smooth anvil roll at a temperature o-f approximately 66 = C with a nip pressure of 4570 kg/m while at a line speed of 61 meters per minute with and overall bond area of 15 to 18 percent based upon the per unit surface area of one side of the film. The laminate was passed through the. bonder in such a fashion that the spunbond layer was adjacent the pattern roll and the film layer was adjacent the anvil roll. The resultant laminate had a WVTR of 1522 g/m2/24 hrs., a hydrohead of 89 centimeters and a peel strength of 148 grams.
Example 5
In Example 5 the core layer was, on a weight percent basis based upon the total weight of the layer, 65 percent ECC English China Supercoat calcium carbonate, 15 percent Himont

KS059'Gatalloy polymer, 15 percent Exxon 9302 Random Copolymer Polypropylene (RCP) and 5 percent Dow 4012 LDPE.
The two outer or skin layers on opposite sides of the core layer comprised 35 percent Himont KS057 Catalloy polymer, 20 percent Techier S110128E62 antiblock/EVA concentrate/masterbatch and 45 percent Exxon 760.36 EMA.
The three layer film was extruded using cast extrusion equipment. The exiting temperature for the skin layers was 175°C and for the core was 234 'C. The air gap (distance between the die heads and the forming roll) was 3 3 centimeters and the gauge of the resultant film was 3 5.5 microns. The film was wound up on a roll and later sent through the MDO unit which was preheated to 77°C and the film was stretched 4X while at a temperature of 77oC and subsequently annealed at a temperature of approximately 75°C. The final measured thickness of the film was 16.92 microns and the basis weight was 15 gsm. Each of the two skin layers comprised 1.0 percent of the overall film thickness. As a result, the core layer represented 98.0 percent of the overall thickness. Using the film thickness measuring method described above, the two skin layers each had a film thickness of 1,75 microns and the core layer had a thickness of 16.57 microns-.
The resultant film was then thermally laninated to the above-described spunbond layer using a patterned bonding roll having a temperature of approximately 73°C and a smooth anvil roll at a temperature of approximately 51 °C with a nip pressure of 4218 kg/m while at a line speed of 152 meters per minute with and overall bond area of 15 to 18 percent based upon the per unit surface area of one side of the film. The laminate was passed through the bonder in such a feshion that the spunbond layer was adjacent the pattern roll and the film layer was adjacent the anvil roll. The resultant laminate had a WVTR of 1930 g/m2/24 hrs., a hydrohead of 66 centimeters and a peel strength of 116 grams.
As shown by the above examples of the present invention, very low thickness (less than 30 microns) multilayer films can be formed. In addition, such films can have very thin skin

layers which can impart a wide variety of functionalities including making the film vapor permeable, liquid impermeable and adhesive in nature. Furthermore such films can be attached to other support layers such as nonwoven to form laminates.
Having thus described the invention in detail, it should be apparent that various modifications can be made in the present invention without departing from the spirit and scope of the following claims.
The co-pending application No:1588/MAS/95 relates to a mechanically capatibize ' flim/non-woven laminates.



WE CLAIM:
1. A multilayer film for products such as personal care absorbent articles, laminates surgical gowns and clothing, said multilayer film comprising: a core layer made from an extrudable thermoplastic polymer, said core layer having a first exterior surface and a second exterior surface, and wherein said core layer contains filler and has a plurality of voids around said filler; a first skin layer attached to said first exterior surface of said core layer to form said multilayer film, said multilayer film defining an overall thickness, and said first skin layer defining a first skin thickness, said first skin thickness comprising less than about ten percent of said overall thickness, said overall thickness not exceeding about 30 micrometers and wherein said multilayer film is a liquid barrier and has a WVTR of at least 300g/m2/24 hours.
2. The multilayer film as claimed in claim 1, wherein said first skin thickness of said first skin layer does not exceed about 2 micrometers.
3. The multilayer film as claimed in claim 1, comprising a second skin layer attached to said second exterior surface of said core layer to form said multilayer film and said first skin thickness comprises not more than about 7.5 percent of said overall thickness.
4. The multilayer film as claimed in claim 3, wherein said second skin thickness of said second skin layer is less than about 7.5 percent of said overall thickness.

5. The multilayer film as claimed in claim 3, wherein said first skin thickness of said first skin layer is less than 2 micrometers.
6. The multilayer film as claimed in claim 4, wherein said second skin thickness of said second skin layer is less than 2 micrometers.
7. The multilayer film as claimed in claim 3, wherein said first skin thickness of said first skin layer and second skin thickness of said second skin layer in combination is less than 15 percent of said overall thickness.
8. The multilayer film as claimed in claim 3, wherein said core layer has a particular filler, in a weight percent of at least 60 percent based upon the total weight of said core layer.
9. The multilayer film as claimed in claim 1, comprising a second skin layer attached to said second exterior surface of said core layer and wherein said first skin layer has a first skin thickness of about 2 um or less, said second skin layer has a second skin thickness of about 2 um or less and said first skin thickness comprises less than about 7.5 percent of said overall thickness and said second skin thickness comprises less than about 7.5 percent of said overall thickness and further said filler being present in said core layer in a weight percent of at least 60 percent based upon the total weight of said core layer.

10. The multilayer film as claimed in claim 1, wherein the personal
care absorbent article is a diaper, training pant, sanitary napkin, incontinence
device or a bandage.
11. A multilayer film substantially as herein described with
reference to the accompanying drawings.


Documents:

1605-mas-1995 abstract.jpg

1605-mas-1995 abstract.pdf

1605-mas-1995 claims.pdf

1605-mas-1995 correspondence-others.pdf

1605-mas-1995 correspondence-po.pdf

1605-mas-1995 description(complete).pdf

1605-mas-1995 drawings.pdf

1605-mas-1995 form-1.pdf

1605-mas-1995 form-10.pdf

1605-mas-1995 form-26.pdf

1605-mas-1995 form-4.pdf

1605-mas-1995 other.pdf

1605-mas-1995 others.pdf

1605-mas-1995 petition.pdf


Patent Number 193261
Indian Patent Application Number 1605/MAS/1995
PG Journal Number 02/2006
Publication Date 13-Jan-2006
Grant Date 26-Oct-2005
Date of Filing 06-Dec-1995
Name of Patentee M/S. KIMBERLY-CLARK WORLDWIDE INC
Applicant Address 401 N. LAKESTREET, NEENAH WISCONSIN 54956,
Inventors:
# Inventor's Name Inventor's Address
1 ANN LOUISE MCCORMACK, 1265 POPLAR GROVE LANE CUMMING, GEORGIA 30131
2 KEVIN GEORGE HETZLER 440 POWERS COURT AVENUE, ALPHARETTA, GEORGIA 30201
PCT International Classification Number A41D31/00
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 NA