Title of Invention

A COATED ABRASIVE BELT FOR USE IN HOT GRINDING APPLICATIONS

Abstract The invention relates to a coated abrasive belt for use at temperatures above 1000°C which comprises a backing material such as herein described, having a tensile strength in the machine direction of at least 750 lb/inch and a cyclic elongation of less than 3% at 100 Ib/inch load at a temperature of 150°C and, deposited on said backing materiaL an abrasive containing layer, comprising abrasive grain and maker an size coats such as herein described.
Full Text



This invention relates to a coated abrasive belt backing material adapted for use in hot grinding applications.
Continuous casting of slab, thin plate and strip has been expanding significantly in recent years with many companies, especially in the United States and in Europe developing proprietary positions in casting equipment and technologies. Typically the metal casting is ground after it has been cooled and can easily be handled. It has been pointed out however that this is not very logical since the metal, upon cooling, becomes rapidly covered with a coating of oxide and scale which can not readily be removed. Thus &om a purely theoretical point of view a metal should be more easily ground when it is hot. Moreover the time taken for the cooling is essentially wasted. It has therefore been proposed to grind the metal when it is hot and suitable machinery and technique for doing this are set out in European Patent Application 435,897.
However, it is found that existing belts, though usable for such applications, fail prematurely as a result of backing failure at the temperatures encountered. It has now been found that this failure mode is often associated not with the wearing out of the abrasive but with excessive elongation of the belt during grinding, where the ambient temperature in the grinding environment can be several hundred degrees Centigrade. This elongation can make the tension on the belt vary and can result in slipping on the rolls on which it is carried or perhaps uneven pressure across the width of the belt where the expansion is uneven.
The present invention provides a coated abrasive belt

built upon a backing that is particularly well adapted for the very difficult working conditions encountered in this application. As a result the working life is greatly extended and the quality of grinding is improved.
Description of the Invention
The present invention provides a coated abrasive belt adapted for use at elevated temperatures, (which for the purposes of this specification is understood to be above about lOOO'^C) , which comprises a backing material having a tensile strength in the machine direction of at least 750 lb/inch, (134 kg/cm), and a cyclic elongation of less than 3% at 100 lb/inch, (17.9 kg/cm), load at a temperature of ISO^C and deposited on said backing material an abrasive containing layer comprising abrasive grain and maker and size coats.
The "cyclic elongation" is tr.e elongation of an abrasive belt after being cycled between extended and relaxed positions a prescribed number of times. In the test an "Instron" tester is used on a strip sample of the coated abrasive product that is 2.54 cm in width. The tester had an ininitial jaw opening at zero applied tensile force of 25.4 cm. The sample to be tested was equilibrated at the test temperature of 150'C and then subjected to" extension at a rate of 2,5 cm/minute until a force of 17.9 kg/cm was registered. At this point, the jaws reversed direction and closed at the same rate until the tensile force was reduced to 3.5 kg/cm. This cycling was automatically continued with contiuous reading of the jaw spacing and tensile force until several cycles had given the same jaw spacings for each value of tensile force, (about 20 cycles). The tensile force was then returned to zero. The maximum elongation noted in the final cycle is called the "cyclic elongation".
The backing material can be a woven fabric selected from the group consisting of plain, twill and sateen weaves or a

stitch-bonded fabric of the type described in USP 4,722,203. The warp yarns preferably comprise a polyaramid fiber of at least 800 denier, and more preferably from about 800 to about 2000 denier. Preferably the denier and the distribution of the warp yarn are selected such that a total of at least about 16,000 denier/inch is achieved. The fill yarns can comprise polyamide or polyester yarns of at least 750 denier, and more preferably from about 800 to about 1200, and the construction has at least 25 warp and fill yarns per linear inch so as to achieve a total of 10,000 denier per inch and a tensile strength of at least 100 lb/inch. The preferred fill yarns are multifilament nylon more preferably a texturized nylon multifilament yarn.
In addition to the above-mentioned yarns it is often possible to use glass fiber yarns, particularly where these are wrapped, for example using a polyaramid such as Kevlar or a polyester.
While woven fabrics have been described above it is also possible to use stitch-bonded Malimo-type fabrics or certain warp knit fabrics adapted for weft insertion, (that is LISA), provided the properties are adjusted to meet the above levels. Such adjustment is however not straightforward and the preferred products are those based on the weaves described above.
The preferred polyaramid warp yarns are preferably multifilament yarns and the fill yarns can be either monofilament yarns or textured or untextured multifilament yarns without significant detrimental effect.
Where the fill yarns are made from a polyester this is preferably a polyethylene terephthalate and more preferably a bright polyester. The more preferred yarns are however nylons, such as a polyaramid such as that sold by DuPont under the trademark "Kevlar", bur more conventional nylons such as nylon 6; nylon 6,6; and nylon 6,12 can also be used. Particularly preferred nylons are texturized cordura nylons.

The most frequently selected weave is a simple 1X1 or, often more preferably 2, 3 or 4X1, with the 1X1 (plain) and 3X1 (twill) weaves being particularly preferred in woven constructions. The number of warp yarns in stitch-bonded or warp knit designs could be lower than the corresponding figure for a woven design and be correlated with the selection of machine gauges.
The preferred construction has at least as many warp yarns as fill yarns with at least 25 such as from about 30 to 35 warp yarns per inch being particularly preferred.
The backing is preferably treated with a saturant and backfill before being provided with the abrasive-containing layer. These may be selected from the formulations commonly used in the industry for heavy duty grinding belts.
The surface of the backing is preferably finished with a formulation containing a filler and a high temperature stable resin to impart sufficient heat resistance while at the same time permitting an appropriate level of flexibility to the belt for grinding applications. A preferred resin coating is a mixture of an epoxy resin, a phenolic resin and an acrylic resin applied in an amount that is from about 20 to about 150% of the fabric weight.
The treated backing can be provided with any suitable form of abrasive layer. Conventionally a maker coat of a resin is applied followed by a layer of abrasive grain. The resin layer is then cured at least sufficiently to retain the grains in place. A resin size layer is then applied over the abrasive layer to aid in maintaining the grain in place and often a supersize coat is applied that may contain grinding aids or other desirable additives. The resin employed in the maker and size coats can be any of those conventionally used in coated abrasives providing they are capable of withstanding the temperatures at which these products are to be used.
The abrasive grain can be any of those commonly used in

coated abrasives such as for example alumina, silicon carbide and alumina/zirconia abrasive cutting grains such as sol-gel alumina derived abrasives are particularly advantageous in high temperature grinding applications. The grit sizes usually used are comparatively coarse since a fine finish is not as important at this early stage of the sheet metal production as consistency of thickness. Thus 24 to 60 grit sixes are most commonly useful in this application.
Accordingly the present invention provides a coated abrasive belt for use at temperatures above 1000*'C which comprises a backing material such as herein described, having a tensile strength in the machine direction of at least 750 lb/inch and a cyclic elongation of less than 3% at 100 lb/inch load at a temperature of 150°C and, deposited on said backing material, an abrasive containing layer, comprising abrasive grain and maker an size coats such as herein described.

Description of Preferred Embodiments
The following styles of backing constructions have been found to be effective in high temperature applications. They are used to indicate the kinds of products that are useful and not to imply any necessary limitation on the scope of the invention. In each case the warp yarn was 840 denier "Kevlar", a polyararaid fiber available under that trade name from DuPont company. The weave, construction and the nature of the fill yarns was varied.

The backings should have excellent stability at high temperatures and this implies an elongation at a temperature

of 150°C under a load of 17.9 kg/cm of less than about 3% for coated abrasive built upon such backings.
To further illustrate the invention two coated abrasive belts were constructed based on the B-type structure described above. Both were given the same saturant and backfill treatments using the following formulations: Saturant Formula
V-1350, a phenolic resin available from Bendix Corp 55%
Water 4.1%
SSXS, a viscosity reducer from Pilot Chemical Co., 2.8%
Calfax DB-45, a wetting agent from Pilot Chem. Co 4.5%
Tamol 165, a dispersant available from Rohm & Haas 1.8%
Red pigment 2.8%
Nopco NDW, a defoamer available from Henkel Corp 0,5%
NalcQ 2311, a defoamer available from Nalco Chem. Co 0.5%
A-llOO silane available from Union carbide 0,5%
Wollastonite filler 27.5%
Backfill Formula
460X-80, a vinyl chloride copolymer available from B.F.
Goodrich 37.9%
CMD 35201, an epoxy resin available from Shell Co 15.0%
calcium Carbonate filler 33.7%
Nopco NDW, a defoamer available from Henkel Corp 3.0%
ASE 60, a thickener available from Rohm & Haas..-.. 3.7%
Black dye 2.0%
The maker coat applied over the baking material prepared as indicated above was based on a phenolic resin/filler combination with minor amounts of water, dye, surfactant and penetration aids.
The size coat comprised the same phenolic resin base along with surfactants, dye, and cryolite filler.
In each case the fabric weight was 16 ib/i-eam, (23i.S gm/m^) ; the saturant add-on weight was 14.2 lb/ream, (210

gm/ra2} ; the backfill add-on weight was 5.0 lb/ream, (74 gm/m2-) ; the maker weight was 30 lb/ream, (444 gm/m2) and the total applied abrasive grain weight was 70 lb/ream, (1036
In one case the grain was a commercial alumina/zirconia grain sold under the registered trademark "Norzon" by Norton Company. In the other case the grain was a seeded sol-gel alumina abrasive used in Norton's "SG" product line. In both cases the grit was 24 grit.
The abrasive belts were tested for physical properties including the critical cyclic elongation test. The. results are shown in Table 1 below.

* Peel adhesion is a measure of the strength of the bond between the abrasive containing layer and the backing and therefore of the extent to which the grain will be retained on the belt during heavy duty grinding operations.
For the purposes of comparison a heavy duty stitch-bonded fabric, (polyester design, style 23-22H-3A), bearing "Norzon" abrasive grit commercially sold by Norton Co. under

the designation E-825 showed an average cyclic elongation under the same conditions of 5.58%
From the above data it will be seen that effective coated abrasive belts can be provided for hot grinding conditions.


WE CLAIM:
1. A coated abrasive belt for use at temperature above 1000°C which comprises a backing material such as herein described, having a tensile strength in the machine direction of at least 750 lb/inch and a cyclic elongation of less than 3% at 100 lb/inch load at a temperature of 150°C and deposited on said backing material, an abrasive containing layer, comprising abrasive grain and maker and size coats such as herein described.
2. The coated abrasive belt according to claim 1 in which the backing material is selected from the group consisting of woven fabrics with a weave of plain, twill and sateen, slitch-bonded fabrics or weft-inserted fabrics.
3. The coated abrasive bell according to claim 2 in which the warp yams are polyaramid yams supplying a total denier per inch of at least 16,000.
4. The coated abrasive beh according to claim 2 in which the backing material has fill yarns selected from polyester and nylon.
5. The coated abrasive belt according to claim 2 in which the number of fill yarns per inch is less than tlie number of warp yams per inch.

6. The coated abrasive belt according to claim 1 comprising an abrasive material
in which the elongation at 150C under a load of 17.9 kg/'cm is less than 2.5%,
7. A coated abrasive belt tor use at elavated temperature substantially as herein
described and exemplified.


Documents:

529-mas-1996 others.pdf

529-mas-1996 abstract.pdf

529-mas-1996 claims.pdf

529-mas-1996 correspondence others.pdf

529-mas-1996 correspondence po.pdf

529-mas-1996 description (complete).pdf

529-mas-1996 form-1.pdf

529-mas-1996 form-26.pdf

529-mas-1996 form-4.pdf

529-mas-1996 form-9.pdf

529-mas-1996 petition.pdf


Patent Number 193016
Indian Patent Application Number 529/MAS/1996
PG Journal Number 30/2009
Publication Date 24-Jul-2009
Grant Date 15-Mar-2005
Date of Filing 02-Apr-1996
Name of Patentee M/S. NORTON COMPANY
Applicant Address 1 NEW BOND STREET, BOX NUMBER 15138,WORCESTER,MASSACHUSETTS 0165-0138
Inventors:
# Inventor's Name Inventor's Address
1 DHIRAJ H. DARJEE 1 SUMMIT PARK, BALLSTON LAKE, NY 12019
PCT International Classification Number B24D11/00
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 NA